The proximal Robbins–Monro method
نویسندگان
چکیده
منابع مشابه
The proximal point method revisited∗
In this short survey, I revisit the role of the proximal point method in large scale optimization. I focus on three recent examples: a proximally guided subgradient method for weakly convex stochastic approximation, the prox-linear algorithm for minimizing compositions of convex functions and smooth maps, and Catalyst generic acceleration for regularized Empirical Risk Minimization.
متن کاملComposite proximal bundle method
We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient information for...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Metric Subregularity and the Proximal Point Method
We examine the linear convergence rates of variants of the proximal point method for finding zeros of maximal monotone operators. We begin by showing how metric subregularity is sufficient for linear convergence to a zero of a maximal monotone operator. This result is then generalized to obtain convergence rates for the problem of finding a common zero of multiple monotone operators by consider...
متن کاملThe convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. This is especially significant in practical applications since the indefinite proximal matrix can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2020
ISSN: 1369-7412,1467-9868
DOI: 10.1111/rssb.12405